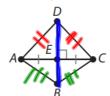

Lines & Angles

If two angles are vertical angles, then the angles are congruent

$ \begin{array}{c} 1/2 \\ 4/3 \\ \hline 8/7 \end{array} $	1/2 4/3 5/6 8/7


Angle Pair	Example	<1 \(\sigma < 5\)
Corresponding angles lie on the same side of the transversal and on the same sides of the intersected lines.	∠1 and ∠5	23+46=180
Same-side interior angles lie on the same side of the transversal and between the intersected lines.	∠3 and ∠6	231°6°60° 23≌45
Alternate interior angles are nonadjacent angles that lie on opposite sides of the transversal between the intersected lines.	∠3 and ∠5	21547
Alternate exterior angles lie on opposite sides of the transversal and outside the intersected lines.	∠1 and ∠7	21-31

Perpendicular Bisector Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Use the diagram shown. \overline{BD} is the perpendicular bisector of \overline{AC} .

- Suppose ED = 16 cm and DA = 20 cm. Find DC.
- Suppose EC = 15 cm and BA = 25 cm. Find BC = 25

Triangles Ms. Levenson

Equations of Parallel & Perpendicular Lines

Parallel Lines

Have the SAME (equal) slopes

Example 1 Write the equation of each line in slope-intercept form.

The line parallel to y = 5x + 1 that passes through (-1, 2) Parallel lines have equal slopes. So the slope of the required line is 5.

Use point-slope form. $y - y_1 = m(x - x_1)$

Substitute for m, x_1, y_1 . y-2=Simplify. y-f=Solve for y. y=

The equation of the line is y = 5x + 7.

Perpendicular Lines

Slope is OPPOSITE RECIPROCAL

**Flip & Switch

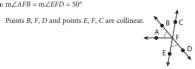
The line perpendicular to $y = \frac{2}{5}k + 12$ that passes through (-6, -8)The product of the slopes of perpendicular lines is $y - y_1 = m(x - x_1)$ Use point-slope form. y - 8 = 5(x - 6)Substitute for m, x_1, y_1 . y + 8 = 5(x + 6)Simplify. y = 5(x + 6)Solve for y.

The equation of the line is y = 5(x + 6)

- **6.** The measures of two vertical angles are 58° and (3x + 4)°. Find the value of x.
- **7.** The measures of two vertical angles are given by the expressions $(x + 3)^{\circ}$ and $(2x 7)^{\circ}$. Find the value

Your Turn

You can represent the measures of an angle and its complement as x° and $(90 - x)^{\circ}$. Similarly, you can represent the measures of an angle and its supplement as x^0 and $(180 - x)^0$. Use these expressions to find the measures of the angles described.


- The measure of an angle is equal to the measure of its complement.
- **10.** The measure of an angle is twice the measure of its supplement.

evaluate

Use this diagram and information for Exercises 1-4.

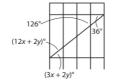
Online Homework
Hints and Help
Extra Practice

Given: $m\angle AFB = m\angle EFD = 50^{\circ}$

1. Determine whether each pair of angles is a pair of vertical angles, a linear pair of angles,

or neither. Select the correct answer for each lettered part.

A. $\angle BFC$ and $\angle DFE$	O Vertical	Linear Pair	Neithe
B. $\angle BFA$ and $\angle DFE$	○ Vertical	Linear Pair	O Neithe
C. ∠BFC and ∠CFD	○ Vertical	Linear Pair	Neithe
D. $\angle AFE$ and $\angle AFC$	○ Vertical	Linear Pair	Neithe
E. $\angle BFE$ and $\angle CFD$	○ Vertical	Linear Pair	Neithe
F. $\angle AFE$ and $\angle BFC$	O Vertical	Linear Pair	Neithe

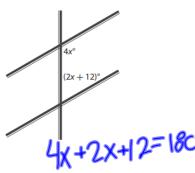

- 2. Find m∠AFE.
- 3. Find m∠DFC.

- 12. The measure of an angle increased by 20° is equal to the measure of its complement.
- 15. Justify Reasoning Complete the two-column proof for the theorem "If two angles are congruent, then their supplements are congruent."

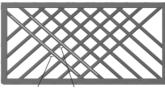
Statements	Reasons
1. ∠ABC≅∠DEF	1. Given
2. The measure of the supplement of $\angle ABC = 180^{\circ} - \text{m} \angle ABC$.	2. Definition of the of an angle
3. The measure of the supplement of $\angle DEF = 180^{\circ} - \text{m} \angle DEF$.	3
4	4. If two angles are congruent, their measures are equal.
5. The measure of the supplement of $\angle DEF = 180^{\circ} - \text{m} \angle ABC$.	5. Substitution Property of
6. The measure of the supplement of ∠ABC = the measure of the supplement of ∠DEF.	6
7. The supplement of ∠ABC ≅ the supplement of	7. If the measures of the supplements of two angles are equal, then supplements of the angles are congruent.

Your Turr

7. In the diagram of a gate, the horizontal bars are parallel and the vertical bars are parallel. Find *x* and *y*. Name the postulates and/or theorems that you used to find the values.


evaluate

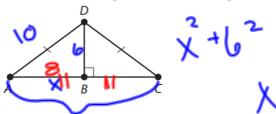
Use the figure to find angle measures. In the figure, $p \parallel q$.



- **3.** Suppose $m\angle 4 = 82^{\circ}$. Find $m\angle 5$.
- **4.** Suppose $m \angle 3 = 105^{\circ}$. Find $m \angle 6$.
- **5.** Suppose $m \angle 3 = 122^{\circ}$. Find $m \angle 5$.
- **6.** Suppose $m \angle 4 = 76^{\circ}$. Find $m \angle 6$.
- **7.** Suppose $m \angle 5 = 109^{\circ}$. Find $m \angle 1$.
- **8.** Suppose $m \angle 6 = 74^{\circ}$. Find $m \angle 2$.

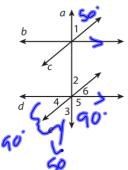
11. Engineering An overpass intersects two lanes of a highway. What must the value of \boldsymbol{x} be to ensure the two lanes are parallel?

12. A trellis consists of overlapping wooden slats. What must the value of *x* be in order for the two slats to be parallel?

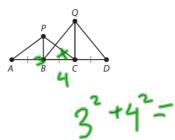


 $(3x + 24)^{\circ}$

4.4


Your Turn

 \overline{AD} is 10 inches long. \overline{BD} is 6 inches long. Find the length of \overline{AC} .


Your Turn

9. Given: $b \parallel d$, $c \parallel e$, $m \angle 1 = 50^{\circ}$, and $m \angle 5 = 90^{\circ}$. Use the diagram to find $m \angle 4$.

Use the diagram to find the lengths. \overline{BP} is the perpendicular bisector of \overline{AC} . \overline{CQ} is the perpendicular bisector of \overline{BD} . AB = BC = CD.

- **7.** Suppose AC = 12 cm and QD = 10 cm. What is **8.** Suppose PB = 3 cm and AD = 12 cm. What is the length of \overline{QC} ?
- the length of \overline{PC} ?

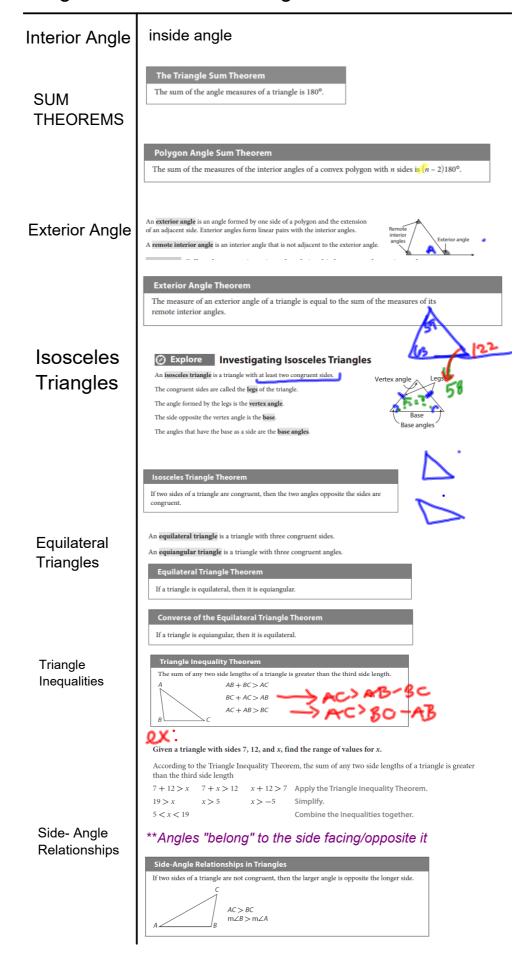
Your Turn

Write the equation of each line in slope-intercept form.

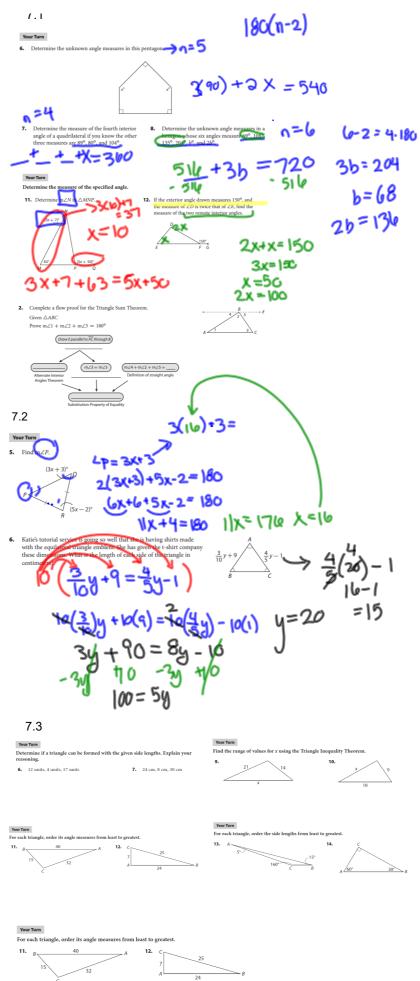
- **4.** The line parallel to y = -x that passes through (5, 2.5)
- **5.** The line parallel to $y = \frac{3}{2}x + 4$ that passes through (-4, 0)

Reflect

6. A carpenter's square forms a right angle. A carpenter places the square so that one side is parallel to an edge of a board, and then draws a line along the other side of the square. Then he slides the square to the right and draws a second line. Why must the two lines be parallel?


Your Turn

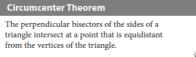
Write the equation of each line in slope-intercept form.


- **7.** The line perpendicular to $y = \frac{3}{2}x + 2$ that passes through (3, -1)
- **8.** The line perpendicular to y = -4x that passes through (0, 0)

Triangles Ms. Levenson

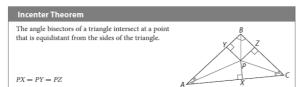
Angles & Sides of a Triangle

Triangles Ms. Levenson



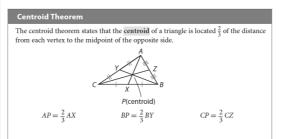
Special Segments in Triangles

Point of Concurrency


Lines are concurrent if they intersect at the same point, called the point of concurrency (intersection)

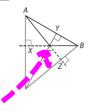
Circumcenter

Incenter



Median

A segment whose endpoints are on 1) a vertex and 2) the midpoint of the opposite side



Centroid

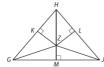
Altitude

A segment whose endpoints are on 1) a vertex and 2) perpendicular to the opposite side

Orthocenter

the point of intersection/ concurrency of all three altitudes

Midsegment

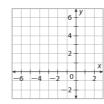

A segment connected the midpoints of two sides of a triangle

Triangle Midsegment Theoren

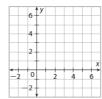
The segment joining the midpoints of two sides of a triangle is parallel to the third side, and its length is half the length of that side.

Your Turn

 \overline{KZ} , \overline{LZ} , and \overline{MZ} are the perpendicular bisectors of $\triangle GHJ$. Copy the sketch and label the given information. Use that information to find the length of each segment. Note that the figure is not drawn to scale.



- **5.** Given: ZG = 65, HL = 63, ZL = 16 Find: HJ and ZJ
- **6.** Given: ZM = 25, ZH = 65, GJ = 120 Find: GM and ZG


Your Turn

Graph the triangle with the given vertices and find the circumcenter of the triangle.

8. Q(-4,0), R(0,0), S(0,6)

9. K(1, 1), L(1, 7), M(6, 1)

8.2

Your Turn

Find each measure.

4. OS

5. $m\angle IJM$, given that $m\angle KJM = 29^{\circ}$

Your Turn

 \overline{QX} and \overline{RX} are angle bisectors of $\triangle PQR$. Find each measure.

- **8.** the distance from X to \overline{PQ}
- **9.** m∠*PQX*

8.3

Your Turn

- **6.** Vertex L is 8 units from the centroid of $\triangle LMN$. Find the length of the median that has one endpoint at L.
- 7. Let \underline{P} be the centroid of $\triangle STU$, and let \overline{SW} be a median of $\triangle STU$. If SW=18, find SP and PW.

Your Turn

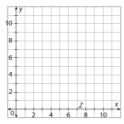
Find the centroid of the triangles with the given vertices. Show your work and check your answer.

9. P(-1,7), Q(9,5), R(4,3)

8. In $\triangle ABC$, the median \overline{AD} is perpendicular to \overline{BC} . If AD=21 feet, describe the position of the centroid of the triangle.

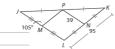
10. A(-6, 0), B(0, 12), C(6, 0)

Your Turn


Find the orthocenter for the triangles described by each set of vertices.

- **13.** *Q*(4, -3), *R*(8, 5), *S*(8, -8)
- **14.** *K*(2, -2), *L*(4, 6), *M*(8, -2)

8.4


Your Turn

4. The vertices of $\triangle XYZ$ are X(3,7), Y(9,11), and Z(7,1). U is the midpoint of \overline{XY} , and W is the midpoint of \overline{XZ} . Show that $\overline{UW} \parallel \overline{YZ}$ and $\overline{UW} = \frac{1}{2}YZ$. Sketch $\triangle XYZ$ and \overline{UW} .

Your Turn

6. Find JL, PM, and m $\angle MLK$.

