Trig Ms. Levenson

How can you use the trigonometric ratios in calculations involving right triangles?

Your Turn

Find the tangent of each specified angle. Write each ratio as a fraction and as a decimal rounded to the nearest hundredth.

• B For right triangle △STU, what is the length of the leg adjacent to ∠S?

Step 1 Write a tangent ratio that involves the unknown length.

$$\tan S = \frac{\text{length of leg}}{\text{length of leg}} \qquad \frac{\angle S}{\text{to } \angle S} = \frac{}{}$$

Step 2 Identify the given values and substitute into the tangent equation.

Step 3 Solve for the unknown leg length.

Divide. Round to the nearest tenth.

7. A ladder needs to reach the second story window, which is 10 feet above the ground, and make an angle with the ground of 70°. How far out from the building does the base of the ladder need to be positioned?

Example 3 Find the measure of the indicated angle. Round to the nearest degree.

19 in.

 \bigcirc What is m $\angle B$?

 $\tan A = \frac{19}{36}$

Step 1 Write the tangent ratio for ∠B using the known values.	Step 2 Write the inverse tangent equation.	Step 3 Evaluate using a calculator and round as indicated.
tan <i>B</i> =	$\frac{1}{\sqrt{2}} = m \angle B$	m∠B≈ °≈ M°

Your Turn

any

8. Find m∠J.

$$\tan J = \frac{4b}{93} + \tan^{-1} \left(\frac{2}{a}\right)$$

x tan 54°=87

5. In a right triangle $\triangle PQR$ with PR = 5, QR = 3, and $m\angle Q = 90^{\circ}$, what are the values of sin P and cos P?

 $\sin P =$

 $\cos P =$

.....

rigonometric Ratios of Complementary Angles

If $\angle A$ and $\angle B$ are the acute angles in a right triangle, then $\sin A = \cos B$ and $\cos A = \sin B$.

Therefore, if θ ("theta") is the measure of an acute angle, then $\sin\theta=\cos\left(90^{\circ}-\theta\right)$ and $\cos\theta=\sin\left(90^{\circ}-\theta\right)$.

Your Turn

Write each trigonometric expression.

- **8.** Given that $\cos 73^{\circ} \approx 0.292$, write the sine of a complementary angle.
- 9. Given that $\sin 45^{\circ} \approx 0.707$, write the cosine of a complementary angle.

Your Turn

11. Suppose a new regulation states that the maximum angle of a ramp for wheelchairs is 8°. At least how long must the new ramp be? Round to the nearest tenth of a foot.

Your Turn

Find the acute angle measures in $\triangle XYZ$, to the nearest degree.

Trig Ms. Levenson

How can you find the missing angle of a right triangle?

To find the ratio of a trig function

To find a missing side:

Examples:

To find a missing angle

Relationship between ratios:

Sin & Cos

**You do the inverse of the ratio!

tan-1 🗧 🗢 ເພ sin-1 ځ ≈ 22.6

The ratios of complementary angles are RECIPROCALS (tangut)

$$sinA = cosB sinA = cos(90 + 4)$$

$$sinA = cosB$$
 $sinA = cos(90-A)$
 $sinB = cosA$
 $cosA = sin(90-A)$
 $con pirmentary$

Trig Ms. Levenson

Pythagorean Triple

$$a^2 + b^2 = c^2$$

Special Right Triangles

45-45-90

